本日のC.A.D.
今回は,第一種 Chebyshev 多項式 $T_4(x)=64x^7-112x^5+56x^3-7x$ に関する
$\exists a\ \exists b\ \exists c\ \forall x\ (\, -1\le x\le1 \to 64 x^7+a x^5+b x^3+c x\le m\,)\quad \cdots\quad (*)$
が $1\le m $ と等価であるという性質です.
まず
$\forall x\ (\, -1\le x\le1 \to 64 x^7+a x^5+b x^3+c x\le 1\,)$
が $a=-112\ \land\ b=56\ \land\ c=-7$ と等価であることは
? tst12([all],[c,a,b,x],imp,"x^2<=1,64*x^7+a*x^5+b*x^3+c*x<=1");Ans(1); *** using Lazard's method (MPP17). [x,3] [b,3] [a,6] [c,25] time = 14,301 ms. 151 4461(14,161) 55129(267,4271) 11(36373,18580) *** combined adjacent 10 cells. 1[c = [c+7,1],a = [a+112,1],b = [b-56,1],true] time = 2min, 31,786 ms.
のように判るので,$1\le m $ ならば $(*)$ を得ます.そして
$\forall x\ (\, -1\le x\le1 \to 64 x^7+a x^5+b x^3+c x< 1\,)$
が false と等価であることも
? tst12([all],[c,a,b,x],imp,"x^2<=1,64*x^7+a*x^5+b*x^3+c*x<1");Ans(); *** using Lazard's method (MPP17). [x,3] [b,3] [a,6] [c,25] time = 14,440 ms. 151 4461(14,161) 55129(267,4271) 0(36373,18580) 1[false] time = 2min, 30,091 ms.
のように判るので,$(*)$ ならば $1\le m $ を得ます.また,前半の結果を用いるなら,後半は
? tst12([ex],[v,x],and,"x^2<=1,64*x^7-112*x^5+56*x^3-7*x==v");Ans(); *** using Lazard's method (MPP17). [x,3] [v,2] time = 42 ms. 5 3(12,4) *** combined adjacent 2 cells. 1[[v+1,1] <= v <= [v-1,1],true] time = 21 ms.
のように $1$ が値域に属することから容易に得られます.
Wolfram Language 12.3.0 Engine for Linux x86 (64-bit) Copyright 1988-2021 Wolfram Research, Inc. In[1]:= Resolve[ForAll[x,x^2<=1,64*x^7+a*x^5+b*x^3+c*x<=1],Reals,WorkingPrecision->50]//Timing Resolve::cadpr: The cylindrical algebraic decomposition algorithm used by Resolve failed due to a too low WorkingPrecision. Increasing the value of WorkingPrecision may allow the algorithm to succeed. Out[1]= {22.957144, ForAll[{x}, x^2 <= 1, c*x + b*x^3 + a*x^5 + 64*x^7 <= 1]} In[2]:= Resolve[ForAll[x,x^2<=1,64*x^7+a*x^5+b*x^3+c*x<=1],Reals,WorkingPrecision->100]//Timing Out[2]= {77.871964, a == -112 && b == 56 && c == -7}