本日のC.A.D.

a, b, c がある 3 角形の 3 辺の長さ,ha, hb, hc がその各辺と対頂点との距離(つまり,高さ)ならば

$2(h_a+h_b+h_c)\le\sqrt{3}(a+b+c)$

6.1 Bottema, et. al. "GEOMETRIC INEQUALITIES"

3 角形の面積を d/2 とおくと

? tst12([ex,ex,ex,ex],[x,a,b,c,d],andx,"a<b+c,b<c+a,c<a+b,4*d^2==(a+b+c)*(-a+b+c)*(a-b+c)*(a+b-c),d*(a*b+b*c+c*a)*x==(a+b+c)*a*b*c,0<x");Ans();
 *** using Lazard's method (MPP17).
[d,2]
[c,7]
[b,8]
[a,1]
[x,8]
time = 560 ms.
17 51(0,0) 953(487,174) 613(719,1411) 14(0,28) 
 *** combined adjacent 13 cells.
1[[3*x^2-4,2] <= x,true,true,true,true]
time = 2,840 ms.

? tst12([ex,ex,ex,ex],[x,a,b,c,d],andx,"0<a,a<b+c,b<c+a,c<a+b,4*d^2==(a+b+c)*(-a+b+c)*(a-b+c)*(a+b-c),d*(a*b+b*c+c*a)*x==(a+b+c)*a*b*c,0<x");Ans();
 *** using Lazard's method (MPP17).
[d,2]
[c,7]
[b,8]
[a,1]
[x,8]
time = 543 ms.
17 17(0,0) 451(6,19) 613(249,493) 14(0,28) 
 *** combined adjacent 13 cells.
1[[3*x^2-4,2] <= x,true,true,true,true]
time = 1,503 ms.

? tst12([ex,ex,ex,ex],[x,a,b,c,d],andx,"0<a,0<b,a<b+c,b<c+a,c<a+b,4*d^2==(a+b+c)*(-a+b+c)*(a-b+c)*(a+b-c),d*(a*b+b*c+c*a)*x==(a+b+c)*a*b*c,0<x");Ans();
 *** using Lazard's method (MPP17).
[d,2]
[c,7]
[b,8]
[a,1]
[x,8]
time = 557 ms.
17 17(0,0) 163(6,19) 613(85,136) 14(0,28) 
 *** combined adjacent 13 cells.
1[[3*x^2-4,2] <= x,true,true,true,true]
time = 871 ms.

WLOG 版.

? tst12([ex,ex,ex],[x,b,c,d],andx,"1<b+c,b<c+1,c<1+b,4*d^2==(1+b+c)*(-1+b+c)*(1-b+c)*(1+b-c),d*(b+b*c+c)*x==(1+b+c)*b*c,0<x");Ans()
 *** using Lazard's method (MPP17).
[d,2]
[c,7]
[b,7]
[x,8]
time = 516 ms.
17 451(6,19) 613(249,493) 14(0,28) 
 *** combined adjacent 13 cells.
1[[3*x^2-4,2] <= x,true,true,true]
time = 1,479 ms.

? tst12([ex,ex,ex],[x,b,c,d],andx,"1<=b,b<c+1,c<1+b,4*d^2==(1+b+c)*(-1+b+c)*(1-b+c)*(1+b-c),d*(b+b*c+c)*x==(1+b+c)*b*c,0<x");Ans()
 *** using Lazard's method (MPP17).
[d,2]
[c,7]
[b,7]
[x,8]
time = 515 ms.
17 90(6,19) 334(61,102) 14(0,28) 
 *** combined adjacent 13 cells.
1[[3*x^2-4,2] <= x,true,true,true]
time = 644 ms.
Wolfram Language 12.3.0 Engine for Linux x86 (64-bit)
Copyright 1988-2021 Wolfram Research, Inc.

In[1]:= Reduce[Exists[{a,b,c,d},And[a<b+c,b<c+a,c<a+b,4*d^2==(a+b+c)*(-a+b+c)*(a-b+c)*(a+b-c),d*(a*b+b*c+c*a)*x=
=(a+b+c)*a*b*c,0<x]],Reals]//Timing                                                                             

Out[1]= {549.639162, x >= 2/Sqrt[3]}

In[2]:= Reduce[Exists[{b,c,d},And[1<b+c,b<c+1,c<1+b,4*d^2==(1+b+c)*(-1+b+c)*(1-b+c)*(1+b-c),d*(b+b*c+c)*x==(1+b+
c)*b*c,0<x]],Reals]//Timing                                                                                     

Out[2]= {1.669497, x >= 2/Sqrt[3]}

本日のC.A.D.

t が実数,a, b, c がある 3 角形の 3 辺の長さならば

$(a^2+b^2+c^2) (a^{t-2} b^{t-2}+b^{t-2} c^{t-2}+c^{t-2} a^{t-2})<2 (a^t+b^t+c^t)(a^{t-2}+b^{t-2}+c^{t-2})$

1.22 Bottema, et. al. "GEOMETRIC INEQUALITIES"
今回も指数に変数が含まれるので(比の値の範囲ではなく)大小関係の特定に十分な不等式を導入し,(過剰ですが)その辺々の比の値の範囲を求めます.具体的には,a^{t-2},b^{t-2},c^{t-2} をそれぞれ x,y,z と一般化して

$(a^2+b^2+c^2) (xy+yz+zx)<2(a^2x+b^2y+c^2z)(x+y+z)$

また,不等式制約は,対称性により,a, b, c の広義増加性と 3 角不等式,一方,t が任意なので,x, y, z については正値広義単調性までとします.

? tst12([ex,ex,ex,ex,ex,ex],[d,x,y,z,a,b,c],andx,"0<a,a<=b,b<=c,c<a+b,0<x,x<=y,y<=z,0<d,(a^2+b^2+c^2)*(x*y+y*z+z*x)==d*(a^2*x+b^2*y+c^2*z)*(x+y+z)");Ans();
 *** using Lazard's method (MPP17).
[c,3]
[b,4]
[a,1]
[z,12]
[y,43]
[x,1]
[d,377]
time = 8,841 ms.
1031 1031(0,0) 29204(78,1598) 320854(4336,29828) 320854(0,0) 983448(38288,145366) 566(47168,1130) 
 *** combined adjacent 565 cells.
1[[d,1] < d <= [d-1,1],true,true,true,true,true,true]
time = 13min, 19,415 ms.

? tst12([ex,ex,ex,ex,ex,ex],[d,x,y,z,a,b,c],andx,"0<a,a<=b,b<=c,c<a+b,0<z,z<=y,y<=x,0<d,(a^2+b^2+c^2)*(x*y+y*z+z*x)==d*(a^2*x+b^2*y+c^2*z)*(x+y+z)");Ans();
 *** using Lazard's method (MPP17).
[c,3]
[b,4]
[a,1]
[z,13]
[y,43]
[x,1]
[d,377]
time = 8,559 ms.
1031 3093(0,0) 117166(61974,47520) 201216(40502,139587) 201216(0,0) 690484(41426,95670) 795(0,1590) 
 *** combined adjacent 794 cells.
1[[d,1] < d < [d-2,1],true,true,true,true,true,true]
time = 11min, 30,179 ms.

? tst12([ex,ex,ex,ex,ex,ex],[d,x,y,z,a,b,c],andx,"0<a,a<=b,b<=c,c<a+b,0<x,0<z,(y-x)*(y-z)<=0,0<d,(a^2+b^2+c^2)*(x*y+y*z+z*x)==d*(a^2*x+b^2*y+c^2*z)*(x+y+z)");Ans();
 *** using Lazard's method (MPP17).
[c,3]
[b,4]
[a,1]
[z,13]
[y,43]
[x,1]
[d,377]
time = 8,570 ms.
1031 1031(0,0) 114073(78,1598) 521039(26034,109955) 521039(0,0) 1671870(79714,241034) 795(0,1590) 
 *** combined adjacent 794 cells.
1[[d,1] < d < [d-2,1],true,true,true,true,true,true]
time = 26min, 57,177 ms.

更に a=1 とすると,x=1 なので 5 変数となり

? tst12([ex,ex,ex,ex],[d,z,y,b,c],andx,"1<=b,b<=c,c<1+b,1<=y,y<=z,0<d,(1+b^2+c^2)*(y+y*z+z)==d*(1+b^2*y+c^2*z)*(1+y+z)");Ans();
 *** using Lazard's method (MPP17).
[c,3]
[b,4]
[y,13]
[z,40]
[d,237]
time = 2,281 ms.
625 67211(68,1376) 104558(15730,64574) 337786(12140,29078) 342(11048,682) 
 *** combined adjacent 341 cells.
1[[d,1] < d <= [d-1,1],true,true,true,true]
time = 4min, 25,670 ms.

? tst12([ex,ex,ex,ex],[d,z,y,b,c],andx,"1<=b,b<=c,c<1+b,1>=y,y>=z,z>0,0<d,(1+b^2+c^2)*(y+y*z+z)==d*(1+b^2*y+c^2*z)*(1+y+z)");Ans();
 *** using Lazard's method (MPP17).
[c,3]
[b,4]
[y,13]
[z,40]
[d,237]
time = 2,266 ms.
625 29875(68,1376) 104556(4584,33736) 342718(20434,39140) 473(0,946) 
 *** combined adjacent 472 cells.
1[[d,1] < d < [d-2,1],true,true,true,true]
time = 3min, 14,980 ms.

? tst12([ex,ex,ex,ex],[d,z,y,b,c],andx,"1<=b,b<=c,c<1+b,0<z,(y-1)*(y-z)<=0,0<d,(1+b^2+c^2)*(y+y*z+z)==d*(1+b^2*y+c^2*z)*(1+y+z)",7);Ans();
 *** using the sum of squares projection.
[c,3]
[b,4]
[y,13]
[z,40]
[d,237]
time = 8,947 ms.
625 27975(66,1227) 181357(4586,30227) 580316(32238,67214) 473(0,946) 
 *** combined adjacent 472 cells.
1[[d,1] < d < [d-2,1],true,true,true,true]
time = 5min, 38,770 ms.

のように高速化されます.

なお,一般化の大小関係の特定(∀X[P→Q] が True,つまり,∃X[P/\¬Q] が False であること)のみなら

? tst12([ex,ex,ex,ex,ex,ex],[z,y,x,b,c,a],andx,"0<a,a<=b,b<=c,c<a+b,0<x,0<z,(y-x)*(y-z)<=0,(a^2+b^2+c^2)*(x*y+y*z+z*x)>=2*(a^2*x+b^2*y+c^2*z)*(x+y+z)");Ans();
 *** using Lazard's method (MPP17).
[a,4]
[c,5]
[b,1]
[x,11]
[y,23]
[z,1]
time = 241 ms.
1 25(0,0) 27(8,23) 81(0,0) 320(154,147) 0(110,436) 
1[false]
time = 328 ms.

? tst12([ex,ex,ex,ex],[z,y,b,c],andx,"1<=b,b<=c,c<1+b,0<z,(y-1)*(y-z)<=0,(1+b^2+c^2)*(y+y*z+z)>=2*(1+b^2*y+c^2*z)*(1+y+z)");Ans();
 *** using Lazard's method (MPP17).
[c,3]
[b,4]
[y,10]
[z,8]
time = 148 ms.
7 23(0,6) 46(8,4) 0(0,0) 
1[false]
time = 38 ms.

のように容易です.

本日のC.A.D.

a, b, c がある 3 角形の 3 辺の長さ,F がその 3 角形の面積,a*ha=b*hb=c*hc=2*F,そして,t が実数のとき,Mt が t-power mean( https://en.wikipedia.org/wiki/Generalized_mean )ならば

$\begin{eqnarray}
& &2F\min\{ (abc)^{-2/3}, (\min\{a,b,c\} \max\{a,b,c\})^{-1} \} Mt(a,b,c)\\
&\le&Mt(h_a,h_b,h_c)\\
&\le&2F\max\{ (abc)^{-2/3}, (\min\{a,b,c\} \max\{a,b,c\})^{-1} \} Mt(a,b,c)\end{eqnarray}$

1.21 Bottema, et. al. "GEOMETRIC INEQUALITIES"

今回は指数に変数が含まれるので(比の値の範囲ではなく)大小関係の特定に十分な不等式を導入し,(過剰ですが)その辺々の比の値の範囲を求めます.具体的には,F を消去した

$\begin{eqnarray}
& &\min\{ (abc)^{-2/3}, (\min\{a,b,c\} \max\{a,b,c\})^{-1} \} M_t(a,b,c)\\
&\le&Mt(1/a,1/b,1/c)\\
&\le&\max\{ (abc)^{-2/3}, (\min\{a,b,c\} \max\{a,b,c\})^{-1} \} Mt(a,b,c)\end{eqnarray}$

は,t=0 の場合,power mean は相乗平均だから明らか,t≠0 の場合,辺々 t 乗しても同じ形(t<0 の場合は不等号が逆向き,かつ,max,min が入れ替わる)なので,a^{t/3},b^{t/3},c^{t/3} をそれぞれ x,y,z とすれば

$\begin{eqnarray}& &\min\{ (xyz)^{-2}, (\min\{x,y,z\} \max\{x,y,z\})^{-3} \} (x^3+y^3+z^3)\\ &\le& (1/x^3)+(1/y^3)+(1/z^3)\\ &\le&\max\{ (xyz)^{-2}, (\min\{x,y,z\} \max\{x,y,z\})^{-3} \} (x^3+y^3+z^3) \end{eqnarray}$

また,a^t,b^t,c^t をそれぞれ x,y,z とすれば

$\begin{eqnarray}& &\min\{ (xyz)^{-2/3}, (\min\{x,y,z\} \max\{x,y,z\})^{-1} \} (x+y+z)\\ &\le& (1/x)+(1/y)+(1/z)\\ &\le&\max\{ (xyz)^{-2/3}, (\min\{x,y,z\} \max\{x,y,z\})^{-1} \} (x+y+z) \end{eqnarray}$

のように一般化できます.あとは対称性により WLOG で 0<x≦y≦z のもと,(x*y*z)^{-2},(x*z)^{-3} の大小,また,(x*y*z)^{-2/3},(x*z)^{-1} の大小,つまり,x*z,y^2 の大小に応じて

/* Left:Center */

? tst12([ex,ex,ex],[d,x,y,z],andx,"0<x,x<=y,y<=z,z*x<=y^2,0<d,(x^3+y^3+z^3)*x*y*z==d*(x^3*y^3+y^3*z^3+z^3*x^3)");Ans();
 *** using Lazard's method (MPP17).
[z,3]
[y,5]
[x,1]
[d,4]
time = 139 ms.
3 3(0,0) 12(9,3) 2(7,7) 
 *** combined adjacent 1 cells.
1[[d,1] < d <= [d-1,1],true,true,true]
time = 31 ms.

/* Right:Center */

? tst12([ex,ex,ex],[d,x,y,z],andx,"0<x,x<=y,y<=z,z*x<=y^2,0<d,(x+y+z)*y==d*(x*y+y*z+z*x)");Ans();
 *** using Lazard's method (MPP17).
[z,3]
[y,6]
[x,1]
[d,4]
time = 76 ms.
7 7(0,0) 20(0,10) 2(0,17) 
 *** combined adjacent 1 cells.
1[[d-1,1] <= d < [d-2,1],true,true,true]
time = 16 ms.

/* Left:Center */

? tst12([ex,ex,ex],[d,x,y,z],andx,"0<x,x<=y,y<=z,z*x>y^2,0<d,(x+y+z)*y==d*(x*y+y*z+z*x)");Ans();
 *** using Lazard's method (MPP17).
[z,3]
[y,6]
[x,1]
[d,4]
time = 83 ms.
7 7(0,0) 20(0,10) 1(0,19) 
 *** combined adjacent 0 cells.
1[[2*d-1,1] < d < [d-1,1],true,true,true]
time = 17 ms.

/* Right:Center */

? tst12([ex,ex,ex],[d,x,y,z],andx,"0<x,x<=y,y<=z,z*x>y^2,0<d,(x^3+y^3+z^3)*x*y*z==d*(x^3*y^3+y^3*z^3+z^3*x^3)");Ans();
 *** using Lazard's method (MPP17).
[z,3]
[y,5]
[x,1]
[d,4]
time = 137 ms.
3 3(0,0) 12(9,3) 1(5,11) 
 *** combined adjacent 0 cells.
1[[d-1,1] < d,true,true,true]
time6 = 38 ms.

といった結果を得ます.

本日のC.A.D.

a, b, c がある 3 角形の 3 辺の長さ,s=(a+b+c)/2 ならば

$\sqrt{s}<\sqrt{s-a}+\sqrt{s-b}+\sqrt{s-c}\le\sqrt{3s}$

1.20 Bottema, et. al. "GEOMETRIC INEQUALITIES"

まず,a,b,c に対する不等式制約は 0<a,0<b,a<b+c,b<c+a,c<a+b とし,s>0 により,s=1(つまり,a/s,b/s,c/s を改めて a,b,c)としても値域は不変,また,tst12 の入力に根号は使えないので,s>a,s>b,s>c により,x=sqrt(s-a),y=sqrt(s-b),z=sqrt(s-c)(つまり,0<x,0<y,0<z,a=s-x^2,b=s-y^2,c=s-z^2)とおき,実行すると

? tst12([ex,ex,ex],[d,x,y,z],andx,"0<x,0<y,0<z,0<1-x^2,0<1-y^2,1-x^2<1-y^2+1-z^2,1-y^2<1-z^2+1-x^2,1-z^2<1-x^2+1-y^2,1-x^2+1-y^2+1-z^2=2,0<d,x+y+z=d",7);Ans()
 *** using the sum of squares projection.
[z,6]
[y,13]
[x,32]
[d,94]
time = 2,928 ms.
261 7203(50,436) 71001(574,9217) 64(21460,61970) 
 *** combined adjacent 63 cells.
1[[d-1,1] < d <= [d^2-3,2],true,true,true]
time = 1min, 59,976 ms.

? pp[4]
%1 = [z,-x^2+(y^2+(z^2-1)),x^2+(-y^2+(z^2-1)),-x^2+(-y^2+(z^2+1)),x^2+(y^2+(z^2-1)),x+(y+(z-d))]

のように最上位の 2 次の射影因子が 4 個生じますが,WLOG で 2 個に減らし,0<a,a≦b,b≦c,c<a+b とすると

? tst12([ex,ex,ex],[d,x,y,z],andx,"0<x,0<y,0<z,0<1-x^2,1-x^2<=1-y^2,1-y^2<=1-z^2,1-z^2<1-x^2+1-y^2,1-x^2+1-y^2+1-z^2=2,0<d,x+y+z=d",7);Ans()
 *** using the sum of squares projection.
[z,6]
[y,9]
[x,19]
[d,37]
time = 554 ms.
73 1529(16,110) 9830(128,2273) 26(2296,8713) 
 *** combined adjacent 25 cells.
1[[d-1,1] < d <= [d^2-3,2],true,true,true]
time = 14,005 ms.

? pp[4]
%2 = [z,-y+z,y+z,-x^2+(-y^2+(z^2+1)),x^2+(y^2+(z^2-1)),x+(y+(z-d))]

或いは,z=d-x-y により z を消去すると

? "0<x,0<y,0<z,0<1-x^2,0<1-y^2,1-x^2<1-y^2+1-z^2,1-y^2<1-z^2+1-x^2,1-z^2<1-x^2+1-y^2,1-x^2+1-y^2+1-z^2=2,0<d";
? strrep(%,["z"],["(d-x-y)"]);
? tst12([ex,ex],[d,x,y],andx,%);Ans()
 *** using Lazard's method (MPP17).
[y,8]
[x,17]
[d,18]
time = 156 ms.
27 251(12,56) 8(56,230) 
 *** combined adjacent 7 cells.
1[[d-1,1] < d <= [d^2-3,2],true,true]
time = 411 ms.

のように大幅に高速化します.

tarski による実行例.

time echo "(display (normalize(qepcad-qe(qfr[ex a,b,c,s1,s2,s3,s0[a<b+c /\ b<c+a /\ c<a+b /\ 2s0^2=a+b+c /\ 0<s0 /\ 2s1^2=-a+b+c /\ 0<s1 /\ 2s2^2=a-b+c /\ 0<s2 /\ 2s3^2=a+b-c /\ 0<s3 /\ s1+s2+s3=x s0 /\ 0<x]]))) ) \n" | tarski -q
[x - 1 > 0 /\ x^2 - 3 <= 0]
real	0m0.300s
user	0m0.263s
sys	0m0.030s

本日のC.A.D.

a, b, c がある 3 角形の 3 辺の長さ,s=(a+b+c)/2,d=(a^2+b^2+c^2-ab-bc-ca)^(1/2) ならば

$25abc<2(s-d)(2s+d)^2\le27abc\le2(s+d)(2s-d)^2$

1.13 Bottema, et. al. "GEOMETRIC INEQUALITIES" (原著に 25abc はありません)

今回も 0<a, 0<b を制約に加え,不要な cell の生成を抑制します.

? tst12([ex,ex,ex,ex],[x,a,b,c,d],andx,"0<a,0<b,a<b+c,b<c+a,c<a+b,0<d,2*d^2==(a-b)^2+(b-c)^2+(c-a)^2,0<x,x*a*b*c==(a+b+c-2*d)*(a+b+c+d)^2");Ans()
 *** using Lazard's method (MPP17).
[d,3]
[c,7]
[b,15]
[a,1]
[x,33]
time = 283 ms.
67 67(0,0) 1437(34,91) 4479(328,1394) 4(2162,2980) 
 *** combined adjacent 3 cells.
1[[x-25,1] < x <= [x-27,1],true,true,true,true]
time = 10,229 ms.

? tst12([ex,ex,ex,ex],[x,a,b,c,d],andx,"0<a,0<b,a<b+c,b<c+a,c<a+b,0<d,2*d^2==(a-b)^2+(b-c)^2+(c-a)^2,0<x,x*a*b*c==(a+b+c+2*d)*(a+b+c-d)^2");Ans()
 *** using Lazard's method (MPP17).
[d,3]
[c,7]
[b,15]
[a,1]
[x,33]
time = 299 ms.
67 67(0,0) 1437(34,91) 4479(328,1394) 42(50,184) 
 *** combined adjacent 41 cells.
1[[x-27,1] <= x,true,true,true,true]
time = 4,652 ms.

WLOG 版.

? tst12([ex,ex,ex],[x,b,c,d],andx,"1<=b,b<=c,c<1+b,0<d,2*d^2==(1-b)^2+(b-c)^2+(c-1)^2,0<x,x*b*c==(1+b+c-2*d)*(1+b+c+d)^2",7);Ans()
 *** using the sum of squares projection.
[d,3]
[c,6]
[b,10]
[x,26]
time = 293 ms.
31 204(27,31) 490(98,246) 4(134,195) 
 *** combined adjacent 3 cells.
1[[x-25,1] < x <= [x-27,1],true,true,true]
time = 1,191 ms.

? tst12([ex,ex,ex],[x,b,c,d],andx,"1<=b,b<=c,c<1+b,0<d,2*d^2==(1-b)^2+(b-c)^2+(c-1)^2,0<x,x*b*c==(1+b+c+2*d)*(1+b+c-d)^2",7);Ans()
 *** using the sum of squares projection.
[d,3]
[c,6]
[b,10]
[x,26]
time = 290 ms.
31 204(27,31) 490(98,246) 14(134,173) 
 *** combined adjacent 13 cells.
1[[x-27,1] <= x,true,true,true]
time = 1,141 ms.

なお,s-d>0,つまり,a^2+b^2+c^2<2(ab+bc+ca) は,例えば,|a-b|^2<c^2 などの辺々の和から得られますが,これを既知としない,つまり,0<x を付さない場合は次のようになります.

? tst12([ex,ex,ex,ex],[x,a,b,c,d],andx,"0<a,0<b,a<b+c,b<c+a,c<a+b,0<d,2*d^2==(a-b)^2+(b-c)^2+(c-a)^2,x*a*b*c==(a+b+c-2*d)*(a+b+c+d)^2");Ans()
 *** using Lazard's method (MPP17).
[d,3]
[c,7]
[b,15]
[a,1]
[x,33]
time = 261 ms.
125 125(0,0) 2427(64,208) 5585(479,2450) 4(2296,3096) 
 *** combined adjacent 3 cells.
1[[x-25,1] < x <= [x-27,1],true,true,true,true]
time = 13,427 ms.

WLOG 版.

? tst12([ex,ex,ex],[x,b,c,d],andx,"1<=b,b<=c,c<1+b,0<d,2*d^2==(1-b)^2+(b-c)^2+(c-1)^2,x*b*c==(1+b+c-2*d)*(1+b+c+d)^2",7);Ans()
 *** using the sum of squares projection.
[d,3]
[c,6]
[b,10]
[x,26]
time = 296 ms.
79 366(52,95) 814(204,506) 4(238,291) 
 *** combined adjacent 3 cells.
1[[x-25,1] < x <= [x-27,1],true,true,true]
time = 1,956 ms.

Mathematica 12.3.0

Mathematica の Reduce の次のような bug に遭遇,Wolfram Research の algorithms developer である Adam Strzebonski さんにお伝えしたのは,今年の 2 月でした.

Wolfram Language 12.2.0 Engine for Linux x86 (64-bit)
Copyright 1988-2021 Wolfram Research, Inc.

In[1]:= f:=-4*a^3*b^2 - 27*b^4 + (16*a^4 + 144 *a*b^2)*#1 - 128*a^2*#1^2 + 256*#1^3 &;                          

In[2]:= Factor[f[c]//.{a->-6, b->-4-2*a}]                                                                      

Out[2]= 256*(-24 + c)*(3 + c)^2

In[3]:= {f1, f2, f3} = {a == -6, b == -4 - 2*a, Root[f, 3] < c};                                                
                                                                                                                
In[4]:= Reduce[And[f1, f2, f3], {a, b, c}, Reals]                                                               

Out[4]= a == -6 && b == 8 && c > -3

In[5]:= Reduce[And[f1, f2, f3], Reals]                                                                          

Out[5]= c > 24 && b == 8 && a == -6

数日前に cloud 版の revision は上がるも,download file は 12.2.0 のまま...早く来い/\と思っていると,昨日,12.3.0 (May 10, 2021) の案内が届きました.
f:id:ehito:20210522235319j:plain
blog.wolfram.com

早速,download,wolframscript を更新して,実行してみると

Wolfram Language 12.3.0 Engine for Linux x86 (64-bit)
Copyright 1988-2021 Wolfram Research, Inc.

In[1]:= f:=-4*a^3*b^2 - 27*b^4 + (16*a^4 + 144 *a*b^2)*#1 - 128*a^2*#1^2 + 256*#1^3 &;                          

In[2]:= Factor[f[c]//.{a->-6, b->-4-2*a}]                                                                      

Out[2]= 256*(-24 + c)*(3 + c)^2

In[3]:= {f1, f2, f3} = {a == -6, b == -4 - 2*a, Root[f, 3] < c};                                                

In[4]:= Reduce[And[f1, f2, f3], {a, b, c}, Reals]                                                               

Out[4]= a == -6 && b == 8 && c > 24

In[5]:= Reduce[And[f1, f2, f3], Reals]                                                                          

Out[5]= c > 24 && b == 8 && a == -6

のように cloud 版と同じく,適切な結果が得られました.Strzebonski さん,有難う御座います.

それにしても(無料使用期限が自動更新される)developers 版のことが周知でない(?)のは何とも不思議です.
https://www.wolfram.com/developer/
writings.stephenwolfram.com

本日のC.A.D.

t が実数,a, b, c がある 3 角形の 3 辺の長さ,s=(a+b+c)/2 ならば

$a^t(s-a)+b^t(s-b)+c^t(s-c)\le(1/2)abc(a^{t-2}+b^{t-2}+c^{t-2})$

1.10 Bottema, et. al. "GEOMETRIC INEQUALITIES"

今回は指数に変数が含まれるので(比の値の範囲ではなく)大小関係の特定に十分な不等式を導入し,(過剰ですが)その辺々の比の値の範囲を求めます.具体的には,右辺を展開した形から,a^{t-1},b^{t-1},c^{t-1} をそれぞれ x,y,z と一般化して

$xa(s-a)+yb(s-b)+zc(s-c)\le(1/2)(bcx+cay+abz)$

また,t の符号が任意なので,x, y, z の不等式制約は正値広義単調性までとします.

? tst12([ex,ex,ex,ex,ex,ex],[d,a,b,c,x,y,z],andx,"0<a,a<=b,b<=c,c<a+b,0<x,0<z,(y-x)*(y-z)<=0,0<d,x*a*((a+b+c)/2-a)+y*b*((a+b+c)/2-b)+z*c*((a+b+c)/2-c)==d*(b*c*x+a*c*y+a*b*z)");Ans()
 *** using Lazard's method (MPP17).
[z,3]
[y,4]
[x,1]
[c,8]
[b,23]
[a,1]
[d,90]
time = 532 ms.
197 197(0,0) 5576(56,300) 32574(440,6114) 32574(0,0) 268888(0,19328) 132(0,9988) 
 *** combined adjacent 131 cells.
1[[d,1] < d <= [2*d-1,1],true,true,true,true,true,true]
time = 1min, 9,981 ms.

? tst12([ex,ex,ex,ex],[d,b,c,y,z],andx,"1<=b,b<=c,c<1+b,0<z,(y-1)*(y-z)<=0,0<d,((1+b+c)/2-1)+y*b*((1+b+c)/2-b)+z*c*((1+b+c)/2-c)==d*(b*c+c*y+b*z)");Ans()
 *** using Lazard's method (MPP17).
[z,3]
[y,4]
[c,8]
[b,23]
[d,90]
time = 423 ms.
197 5576(56,300) 32574(440,6114) 268888(0,19328) 132(0,9988) 
 *** combined adjacent 131 cells.
1[[d,1] < d <= [2*d-1,1],true,true,true,true]
time = 47,092 ms.

ここで導入した不等式は,変形すると

$0\le x(a-b)(a-c)+y(b-c)(b-a)+z(c-a)(c-b)$

つまり,Schur の不等式(https://en.wikipedia.org/wiki/Schur%27s_inequality)の仲間なので,3 角不等式の制約を外しても十分です.

? tst12([ex,ex,ex,ex,ex,ex],[d,a,b,c,x,y,z],andx,"0<a,a<=b,b<=c,0<x,0<z,(y-x)*(y-z)<=0,0<d,x*a*((a+b+c)/2-a)+y*b*((a+b+c)/2-b)+z*c*((a+b+c)/2-c)==d*(b*c*x+a*c*y+a*b*z)");Ans()
 *** using Lazard's method (MPP17).
[z,3]
[y,4]
[x,1]
[c,7]
[b,19]
[a,1]
[d,62]
time = 344 ms.
101 101(0,0) 2350(52,147) 17646(240,2436) 17646(0,0) 144248(0,9922) 60(0,6924) 
 *** combined adjacent 59 cells.
1[[d,1] < d <= [2*d-1,1],true,true,true,true,true,true]
time = 35,123 ms.

? tst12([ex,ex,ex,ex],[d,b,c,y,z],andx,"1<=b,b<=c,0<z,(y-1)*(y-z)<=0,0<d,((1+b+c)/2-1)+y*b*((1+b+c)/2-b)+z*c*((1+b+c)/2-c)==d*(b*c+c*y+b*z)");Ans()
 *** using Lazard's method (MPP17).
[z,3]
[y,4]
[c,7]
[b,19]
[d,62]
time = 357 ms.
101 2350(52,147) 17646(240,2436) 144248(0,9922) 60(0,6924) 
 *** combined adjacent 59 cells.
1[[d,1] < d <= [2*d-1,1],true,true,true,true]
time = 22,029 ms.